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Abstract

We consider boundedly-rational agents in McCall’s model of intertemporal job
search. Agents update over time their perception of the value of waiting for an ad-
ditional job offer using value-function learning. A first-principles argument applied
to a stationary environment demonstrates asymptotic convergence to fully optimal
decision-making. In environments with actual or possible structural change our agents
are assumed to discount past data. Using simulations, we consider a change in unem-
ployment benefits, and study the effect of the associated learning dynamics on unem-
ployment and its duration. We then explore the implications of our model of bounded
rationality for business cycle amplification and frictional wage dispersion.

JEL Classifications: D83; D84; E24
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1 Introduction

We reconsider the labor-search framework in which a worker must decide whether to work at
a given wage or to wait and search for a better wage. These models have been widely used
in macroeconomics to study frictional unemployment and wage dispersion: see, for exam-
ple, Rogerson, Shimer and Wright (2005). While these models have met with considerable
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success, several prominent studies have identified empirical puzzles associated with them:
Shimer (2007) finds that when coupled with productivity shocks the Diamond-Mortensen-
Pissarides model is unable to generate sufficient volatility in unemployment, and Hornstein
et al (2011) (HKV) show that a general class of labor-search models are not able to produce
adequate wage dispersion. Labor search models rely heavily on optimizing agents with ra-
tional expectations (RE), and in this paper we examine what happens in these models when
agents must learn over time how to optimize against unknown wage distributions.

There are a number of reasons to question the plausibility of the rational expectations
hypothesis. Rational forecasting requires a full understanding of the relevant stochastic
structure – a structure that is arguably out of the reach of working economists. Indeed,
professional forecasters do not know and generally disagree on the correct model, and for
any given specification they must estimate the model’s parameters – parameters that are
assumed known under RE. Separately, rational agents are also assumed to solve complex
dynamic programming problems – problems that are in reality approachable only through
sophisticated computational techniques.

To examine the implications of adaptive learning in labor-search models, we follow HKV
and adopt as our laboratory the canonical sequential-search model of McCall (1970). The
simplicity of the model allows us to obtain analytic results.1 To model how agents learn over
time, we adopt a bounded optimality approach along the lines of Evans and McGough (2018a)
in which agents make decisions based on perceived trade-offs. This approach to boundedly
optimal decision-making is particularly simple and natural in the context of labor search
models with qualitative choices.

Our implementation of bounded optimality has a number of attractive features. Agents’
behaviors are at once sophisticated and simple: they are anchored to the Bellman approach
and yet only require that agents makes decisions by selecting the better of two options,
based on the perceived value of receiving a random wage draw. This value is revised over
time as experience is gained and new data become available. Despite its simplicity, this
implementation is a small deviation from fully rational decision-making in that agents can
learn to optimize over time. For convenience we will refer to our framework as the bounded
rationality (BR) model.

We begin by developing our version of the McCall model, based on the presentation
in Ljungqvist and Sargent (2012), which obtains a solution under rational expectations
and optimal decision-making. Then, using value-function learning as suggested in Evans
and McGough (2018a), we develop a framework for boundedly rational decision-making.
Under very general conditions, we show directly, using the martingale convergence theorem,
that agents make fully optimal decisions asymptotically. Through numerical simulations,
we study transitional dynamics under learning. These dynamics are distinct from their RE
counterpart, and would plausibly arise when there are changes in policy or structure. Finally,
we demonstrate the potential of our approach to address the puzzles identified above.

1While the McCall model is partial equilibrium in the sense that the wage offer distribution is exogenous,
this assumption, as pointed out by HKV, “is not at all restrictive.” HKV illustrate this point using the island
model of Lucas and Prescott (1974) and the matching model of Pissarides (1985).
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A key feature of our BR approach is that, in making their decisions, workers incorporate
several structural features of the economy that they know, while learning over time about
a key but unknown sufficient statistic for optimal decision-making. This unknown sufficient
statistic, which we denote by Q∗, measures the rational agent’s expected discounted utility
when they are unemployed and waiting for a random wage offer. As is well-known, optimal
decision-making in this setting is characterized by a reservation wage w∗ that is pinned
down by Q∗. Under boundedly rational decision-making with adaptive learning, agents use
an estimate Q of Q∗ to make decisions given their knowledge of the unemployment benefit
level b and the probability α per period of job separation when employed. Their estimate
Q determines their corresponding reservation wage w̄, and thus their boundedly optimal
decisions.

The estimate Q of Q∗ is updated over time based on observed wage offers. It is natural
to assume that both unemployed and employed workers observe a (possibly small) sample
of wage offers; agents update their estimate Q based on this sample. Our central theoretical
result is that this procedure asymptotically yields fully optimal decision making: over time
agents learn Q∗. We emphasize two distinct features of our result that are particularly
attractive. First, agents do not need to have any knowledge of the distribution of wages;
and second, their computations are simple as well as natural: they do not need to iterate a
value function and only need to track one estimate that is updated each period.

Asymptotic optimality in stationary environments also motivates the use of closely related
adaptive learning mechanisms through which agents adjust their behaviors in the presence of
possible structural change. To examine the implications of possible structural change for the
model’s dynamics, we turn to simulations based on constant-gain learning, i.e. agents use an
estimation procedure that discounts older data. We note that constant gain is standard in
applied work involving adaptive learning, and is particularly appropriate when the possibility
of structural change is under consideration.

To gain insight into the behavior of BR agents in the presence of structural change, we
begin with a simple policy experiment in which the unemployment benefits rate is unex-
pectedly and permanently changed. By embedding our framework in a model populated by
many agents, the comparative statics and dynamics of aggregates like the mean unemploy-
ment rate and unemployment duration can be examined. We find that the impact response
of an increase in benefits appears unrealistically large under RE, whereas it is much more
muted under BR. This finding reflects a combination of direct effects, i.e. those effects in-
duced by changes in structure holding fixed beliefs, and indirect effects resulting from the
changes in beliefs induced by the structural change: both effects are simultaneously realized
for the rational agent whereas the BR agent learns about the indirect effect only gradually
over time.

The distinct responses of rational and BR agents to structural change suggests the pos-
sibility for the BR approach to be a simple and parsimonious way to address puzzles in the
labor-search literature, and to demonstrate this potential we consider two applications. We
begin by considering the Shimer puzzle. We modify our model to allow for time-varying
aggregate productivity shocks to impact realized wages. Using a calibrated model, we find
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that that the variation in unemployment induced by the productivity shocks is minimal when
agents are rational, just as the Shimer puzzle predicts; however, under a natural implemen-
tation of boundedly rationality, the implied business-cycle dynamics are greatly magnified.
These findings reflect the tension induced by the direct and indirect effects, which, in the
case of productivity shocks, work in opposite directions, and thus serve to mute the rational
agent’s response.

Then we turn to the frictional-wage distribution puzzle identified by HKV, who find
that calibrated search models fail to generate significant cross-sectional variation in wages.
That the agents have rational expectations, and therefore fully incorporate the value of
search into their decisions, is a foundational assumption of their analysis. Under rational
expectations, the short unemployment durations observed in the US imply a low value to
searching and, hence, require a small dispersion of wages generated by search frictions.
Introducing boundedly rational decision makers is a natural way to resolve this puzzle.
Indeed, using a calibrated model in line with that of HKV, we show that when agents are
fully rational the spread in observed wages is minimal, while the spread is much larger when
agents are boundedly rational.

Labor search models in which agents have incomplete knowledge about the wage dis-
tribution have been considered by a variety of authors. In an early contribution, Burdett
and Vishwanath (1988) examine the time-series behavior of reservation wages in a modeling
environment similar to ours, in which agents do know fully the understand the distribution
of wage offers, and act as Bayesian decision makers that fully solve their dynamic optimiza-
tion problems. While their main result is that, under certain assumptions, reservation wages
are declining in the length of unemployment spells, they also find it is not trivial even to
establish that a reservation-wage strategy is optimal. An advantage of our approach is that
BR agents employ a reservation-wage strategy that is natural, asymptotically optimal and
easy to implement.

More recently, Rotemberg (2017) uses the HKV version of the McCall model to analyze
the potential for group learning to explain wage dispersion. In his setup the distribution
of wage offers is unknown and is misperceived to be stationary. Conditional on their mis-
perceptions, agents make fully optimal decisions using the observed means of their group’s
realized wages and the durations of their unemployment spells. He shows that if the wage-
offer distribution is non-stationary in the sense that later wage offers have a higher mean,
then the stationary perceptions held by agents can lead to self-confirming equilibria with in-
creased wage-dispersion and even to equilibrium multiplicity.2 Like Burdett and Vishwanath
(1988), Rotemberg (2017) adopts the assumption that agents can fully solve their dynamic
programming problem given their potentially misspecified beliefs.3

2We note that Rotemberg (2017) is focused on equilibrium outcomes, and in particular does not explicitly
include consideration of learning dynamics.

3Using a different labor-search model that includes Nash bargaining, Damdinsuren and Zaharieva (2018)
assume boundedly rational agents use (misspecified) linear forecasting models based on economy-wide data to
form expectations of future wages. The dynamics of the model with adaptive learning are studied numerically
in an agent-based version of the model. Among their findings is that higher bargaining power is associated
with higher wages and larger wage dispersion.
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The approach presented in this paper is related to several approaches in the macroeco-
nomics and machine-learning literature. Like the adaptive least-squares learning approach
in macroeconomics, e.g. Bray and Savin (1986), Marcet and Sargent (1989) and Evans and
Honkapohja (2001), which focuses on least-squares learning, we consider decision-making
procedures that, while not fully rational, have the potential to converge to rational expec-
tations. Like Marimon, McGrattan and Sargent (1990), Preston (2005) and Cogley and
Sargent (2008), our framework has long-lived agents that must solve a challenging dynamic
stochastic optimization problem. In these settings two issues are of concern: (i) there are
parameters that govern the state dynamics that may not be known; and (ii) the assumption
that agents know how to solve dynamic stochastic programming problems is implausibly
strong.

Cogley and Sargent (2008) examine the first issue in a permanent-income model in which
income follows a two-state Markov process with unknown transition probabilities, taking
the agent’s problem outside the usual dynamic programming framework. Two approaches to
decision making are considered. Bayesian decision-makers follow a fully optimal decision rule
within an expanded state space, which requires considerable sophistication and expertise for
the agent. The second approach employs the “anticipated utility” model of Kreps (1998),
in which agents make decisions each period by solving their dynamic programing problem
going forward based on current estimates of the transition probabilities. This procedure is
boundedly rational, since agents ignore that their estimates will be revised in the future, but
is computationally simpler and performs almost as well as optimal decision-making.

Bayesian decision-making has also been used in boundedly-rational settings. Adam,
Marcet and Beutel (2017) have shown how to implement this approach in an asset-pricing
environment. In their set-up agents are “internally rational,” in the sense that they have a
prior over variables exogenous to their decision-making, which they update over time using
Bayes Law. These beliefs may not be externally rational in the sense of fully agreeing with
the actual law of motion for these variables. By imposing simple natural forms of beliefs, it
is possible to solve the agents’ dynamic programming problem.

The anticipated utility framework has also been employed in adaptive learning set-ups
in which long-lived agents use least-squares learning. Preston (2005) developed an approach
in which agents estimate and update over time the forecasting models for relevant variables
exogenous to the agents’ decision-making. For given forecasts of these variables over an
infinite horizon, agents make decisions based on the solution to their dynamic optimization
problem. Again, these decisions are boundedly optimal in the sense that the procedure does
not take account of the fact that their estimates of the parameters will change over time.

The approach adopted in the current paper is closest to the general bounded-optimality
framework of Evans and McGough (2018a). In their approach infinitely-lived agents optimize
by solving a two-period problem in which a suitable variable in the second period encodes
benefits for the entire future. While their primary focus is on shadow-price learning, in which
the key second-period variables are shadow prices for the endogenous state vector, they also
show how a value function learning approach can equivalently be employed in a setting with
continuously measured state variables. Within a linear-quadratic (LQ) framework, Evans
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and McGough (2018a) use the anticipated utility approach and obtain conditions under
which an agent can learn to optimize over time.4

The current paper applies a version of value-function learning in a discrete choice setting
in which a worker must choose whether or not to take a wage offer. While this a natural
setting for value-function learning, the discrete choice and non-LQ features of the model
take the agent’s decision problem outside the theoretical framework developed in Evans
and McGough (2018a). In our McCall-type set-up, the single sufficient statistic needed is
the value of the dynamic optimization problem when the agent is unemployed and facing
a random wage draw. We show how, given an estimate of this value, an agent can make
boundedly optimal decisions under the anticipated utility assumption, and we demonstrate
that when agents in addition use a natural adaptive-learning scheme for updating their
estimates over time, they will asymptotically learn with probability one how to make optimal
decisions within a stationary environment.5

Our framework is also related to the “Q-learning” approach developed originally by
Watkins (1989) and Watkins and Dayan (1992) as well its extensions to temporal differ-
ence learning from the computer science literature.6 In that approach agents make decisions
based on estimates of quality-action pairs, with the quality function updated over time. As
in the current paper the Q-learning approach is motivated by the Bellman equation, but it
is typically and most effectively implemented in set-ups in which the state as well as action
spaces are finite. In our set-up agents make decisions facing a continuously-valued wage
distribution, where the distribution is unknown to the agents; furthermore, when making
their boundedly optimal choices, our agents are able to incorporate features of the transition
dynamics, such as benefit levels, that are known to the agents.

Our paper proceeds as follows. Section 2 outlines the environment. Section 3 presents
our model of boundedly optimal decision-making. Section 4 discusses structural change and
learning dynamics in the context of an unexpected benefits change. Section 5 covers the
applications to the Shimer and HKV puzzles. Section 6 concludes.

2 The Model and Optimal Decision-making

We consider an infinitely-lived agent who receives utility from consumption via the instan-
taneous utility function U . Time is discrete, wages are paid in perishable goods, and there
is no storage technology. At the beginning of a given period the agent receives a wage offer,
and decides whether or not to accept it. The wage offer is drawn from a distribution that
depends on whether the agent was employed or unemployed at the end of the previous pe-
riod. If the agent was employed, her wage in the previous period constitutes her wage offer

4Evans and McGough (2018b) show how to apply shadow-price learning to a wide range of DSGE macroe-
conomic frameworks using computational techniques.

5By deriving our results from first principles we are able to obtain global stability, which is also in contrast
to Evans and McGough (2018a).

6See Sutton and Barto (2011) for a detailed introduction to reinforcement learning and in particular
temporal difference learning.
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in the current period. If the agent was unemployed at the end of the previous period, she
receives a wage offer w drawn from a time-invariant exogenous distribution F (density dF ).
In either case, the agent must decide whether or not to accept the offer.

If the wage offer is not accepted the agent is unemployed in the current period, and
receives an unemployment benefit b > 0; and, because she is unemployed at the end of the
current period, she will receive a wage offer drawn from F at the beginning of the next
period. If the offer is accepted then the agent is employed and receives the wage w in the
current period. We assume exogenous job destruction parameterized by α. At the end of
the period, with probability 1− α the match with the firm is preserved and, because she is
employed at the end of the current period, she will receive the same wage offer in the next
period. With probability α the match is destroyed, the worker becomes unemployed at the
end of the period, and at the beginning of the next period she receives a wage offer drawn
from F . We remark that, under full rationality, an agent employed in the preceding period
will always accept her wage offer in the current period; however, under bounded rationality,
previously employed agents may decide to enter unemployment as their understanding of
the world evolves.

We make the following assumptions to ensure the that the worker’s problem is well
behaved, which we set out for future reference:

Assumption A:

1. U is twice continuously differentiable, with U ′ > 0 and U ′′ ≤ 0.

2. F has support [wmin, wmax], where 0 < wmin < wmax.

3. All wage draws are independent over time and across agents.

4. 0 < α < 1.

The first two items ensure the existence and continuity of the worker’s value function, while
the third item guarantees that the worker’s optimal value of search does not depend on
additional state variables.

It remains to specify how agents decide whether or not to accept the wage offer. In
this Section we adopt the conventional assumption that agents are fully rational and we
characterize the corresponding optimal behavior. Section 3 takes up the case of boundedly
rational agents, and shows, under suitable assumptions, that boundedly optimal decision-
making converges to fully optimal behavior.

Assumption A implies that the fully optimal agent makes decisions by solving the fol-
lowing dynamic programing problem. Let V ∗(w) be the expected present value of utility of
a fully rational worker entering the period with wage offer w. It follows that

V ∗(w) = max
a∈{0,1}

U (c(a, w)) + βE (V ∗(w′)|a, w) (1)

w′ = g(w, a, ŵ, s),
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with the expectation E taken over random variables ŵ and s. Here a ∈ {0, 1} is a control
variable identifying whether the job is accepted (a = 1) or rejected (a = 0), ŵ is an i.i.d.
random variable drawn from F , and s ∈ {0, 1} is an i.i.d. random variable taking the value 0
with probability α, thus capturing job destruction. Finally, functions c(a, w) and g(w, a, ŵ, s)
are defined as follows

c(a, w) =

{
w if a = 1

b if a = 0
and g(w, a, ŵ, s) =

{
w if a = 1 and s = 1

ŵ otherwise

and codify how the consumption and the availability of future wage offers depend on the
worker’s choice of accepting or rejecting the wage offer.

The optimal value V ∗(w) of having a wage offer w in hand allows us to define

Q∗ = E (V ∗(ŵ)) ≡
∫ wmax

wmin

V ∗(ŵ)dF (ŵ),

where we note that Q∗ is the value, under optimal decision-making, associated with being
unemployed at the start of the period, i.e. before ŵ is realized. Moreover, as we will see in our
introduction of bounded optimality, Q∗ encapsulates all of the complicated features of this
problem: that the wage offer distribution may not be known and that, even conditional on
knowing the wage offer distribution, making optimal decisions requires solving a complicated
fixed point problem.

3 Boundedly Optimal Decision-making

In this Section we specify how boundedly optimal agents make decisions, which requires
allowing for an explicit dependence of the value function on beliefs. First in Section 3.1
we show how boundedly optimal decision-making can be formulated in terms of an agent’s
perception of the expected discounted utility of receiving a random wage draw, a value we
denote by Q. We note that only unemployed agents receive random wage draws; thus,
Q may be interpreted as the value associated with being unemployed. In Section 3.2 we
demonstrate that optimal behavior can be viewed as a special case, i.e. Q = Q∗. In Section
3.3 we show that under a natural updating rule the agent’s perceptions Q converge over time
to Q∗, i.e. agents learn over time to make optimal decisions. Finally, Section 3.4 discusses
the implications of altering the learning rule to discount older data.

3.1 Decision-making under subjective beliefs

Denote by Q the agent’s current perceived (i.e. subjective) value of receiving a random wage
offer drawn from F . Let V (w,Q) denote the perceived value of a wage offer w. With this
notation we assume that boundedly optimal agents with beliefs Q make decisions by solving
the following optimization problem

V (w,Q) = max {U(b) + βQ,U(w) + β(1− α)V (w,Q) + βαQ} . (2)
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The agent accepts the wage offer w if

U(b) + βQ < U(w) + β(1− α)V (w,Q) + βαQ (3)

and otherwise rejects the offer.7 Now observe that if (3) holds then

V (w,Q) = U(w) + β(1− α)V (w,Q) + βαQ, (4)

which implies
V (w,Q) = φU(w) + βαφQ, (5)

where φ = (1− β(1− α))−1, and we note that 0 < αφ < 1.
We think of the optimal belief Q∗ as difficult to determine, requiring as it does, a complete

understanding of the wage distribution as well as the ability to compute fixed points. In
contrast, given Q, the determination of V (w,Q) is relatively straightforward: if (3) holds
then V (w,Q) is given by (5). The intuition for this equation can be given by rearranging
(4) as

V (w,Q) = U(w) + β (V (w,Q) + α (Q− V (w,Q))) .

This says that if accepting a job at w is optimal then its value its equal to U(w) plus
the discounted expected value in the coming period, which is again V (w,Q) if employment
continues, but must be adjusted for the “capital loss” Q−V (w,Q) in value that arises if the
agent becomes unemployed, which occurs with probability α.

If instead (3) does not hold, the wage offer is rejected and the agent’s present value of
utility is simply U(b) + βQ. We conclude that

V (w,Q) = max {U(b) + βQ, φU(w) + βαφQ} . (6)

Thus, given perceived Q, decision-making is straightforward based on (6). We now obtain
results that characterize the properties of boundedly optimal decision-making based on Q,
and in the next Section we relate these results to fully optimal decision-making.

Our first result establishes the existence of a “reservation wage” w̄ that depend on beliefs
Q. Because this dependency is piece-wise it is useful to define

Q? =
φU(w?)− U(b)

β(1− αφ)
, where ? ∈ {min,max}.

Lemma 1. There is a continuous, non-decreasing function w̄ : R → [wmin, wmax], which is
differentiable on (Qmin, Qmax), such that w̄(Q?) = w? for ? ∈ {min,max}, and such that

V (w,Q) =

{
U(b) + βQ if Q > Qmax or if Q ∈ [Qmin, Qmax] and w ≤ w̄(Q)
φU(w) + βαφQ if Q < Qmin or if Q ∈ [Qmin, Qmax] and w > w̄(Q)

. (7)

The proof of this and all results in this Section are in Appendix A. This lemma immediately
implies the following proposition characterizing boundedly optimal behavior.

7If U(b) + βQ = V (w,Q) the agent is indifferent between accepting the job or remaining unemployed. In
this (probability zero) case, for convenience, we assume that the agent rejects the job.
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Proposition 1. (Boundedly optimal behavior) Given beliefs Q, there exists w̄ (Q) ≥
wmin such that the policy at = 1 if and only if wt > w̄ solves the boundedly optimal agent’s
problem (2).

The behavior of a boundedly rational agent with beliefs Q is characterized by a reservation
wage w̄.

Noting from Lemma 1 that w̄ depends on Q and b, we conclude this section with simple
comparative statics results with respect to these variables that will be useful in Section 4.
Provided that wmin < w̄(Q, b) < wmax, w̄ is implicitly defined by

φU (w̄(Q, b)) + βαφQ = U(b) + βQ. (8)

From Assumption A we have that u is C1 and thus

∂w̄

∂Q
=

β(1− αφ)

φU ′ (w̄(Q, b))
and

∂w̄

∂b
=

U ′ (b)

φU ′ (w̄(Q, b))
, (9)

which are both positive provided U ′ > 0.
Below we drop the explicit dependence of w̄ on b except when considering cases in which

b is changed.

3.2 Optimal beliefs

We now establish a link between optimal decision-making and decisions under subjective
beliefs. To this end we define a map T : R→ R by

T (Q) = E (V (ŵ, Q)) =

∫ wmax

wmin

V (ŵ, Q)dF (ŵ). (10)

We interpret T (Q) as the expected value today, induced by beliefs Q and the behavioral
primitive, of receiving a random wage offer. Lemma A.2 in Appendix A establishes that T is
continuous, and is differentiable except at finite number of points, with a positive derivative
strictly less than one. As one would expect there is a tight link between the fixed point of
this T map and optimal decision making by the agent.

Theorem 1. (Optimal Behavior) The expected discounted utility under optimal decision-
making of receiving a random wage draw, Q∗ = E (V ∗ (ŵ)), is the unique fixed point of the
T-map (10). The policy a = 1 if and only if w > w̄(Q∗) ≡ w∗ solves the optimal agent’s
problem (1).

This is the standard “reservation wage” result of the McCall search model. However, Theo-
rem 1 comes with the additional interpretation that there exists a belief Q∗ about the value
of being unemployed such that a boundedly rational agent with beliefs Q∗ behaves optimally.
The explicit connection between Q∗ and the agent’s problem (1) arises from the observation
V ∗(w) = V (w,Q∗), which is established in the proof of Theorem 1. This observation may
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then be coupled with Proposition 1, together with the equivalence of problems (1) and (2)
when Q = Q∗.

Finally, it is convenient to adopt assumptions that result in non-trivial optimal decision-
making, i.e. in which some wage offers are rejected and other wage offers are accepted:
wmin < w∗ < wmax. The following Proposition characterizes the parameter restrictions
consistent with this assumption.

Proposition 2. (Non-trivial decision-making) If

φ

(
U(wmin)− β(1− α)

∫ wmax

wmin

U(ŵ)dF (ŵ)

)
< U(b) < φ(1− β)(1− α)U(wmax) (11)

then Qmin < Q∗ < Qmax, i.e. wmin < w∗ < wmax.

We omit the straightforward proof. We remark that when condition (11) holds, the
comparative statics result (9) applies to Q∗. Henceforth we assume the following:

Assumption B: U, b, wmin, wmax, α, β and F are such that Condition (11) holds.

3.3 Learning When to Say No

We now return to considerations involving boundedly rational agents. Recall that Propo-
sition 1 presents a reservation-wage decision rule that is optimal for given beliefs Q. For
agents to learn over time in order to improve their decision-making behavior, it is necessary
to update their beliefs as new data become available.8 We adopt the “anticipated utility”
perspective introduced by Kreps (1998), and frequently employed in the adaptive learning
literature, in which agents make decisions based on their current beliefs Q, while ignoring
the fact that these beliefs will evolve over time.9

As just discussed, agents update their beliefs over time as new data become available;
however, we observe that if a given agent learned only from their own experience then they
would update their beliefs only when they were unemployed. Because this is an implausibly
extreme assumption, we introduce a social component to the adaptive learning process: we
assume that in each period each agent observes a sample of wage offers received by unem-
ployed workers and uses this sample to revise the perceived value from being unemployed.
We denote by ŵNt = {ŵt(k)}Nk=1 the random sample of N wage realizations. For simplicity
we assume that unemployed and employed agents use the same sample size.10

Let Qt be the value, perceived at the start of period t, of being unemployed. Note that Qt

measures the agent’s perception of the value of receiving a random wage draw.11 To update

8Proposition 1 provides optimal decision-making given beliefs under the assumption that the separation
rate is known. It would be straightforward to require our agents to also estimate this separation rate. We
explore this further in Section 5.2. Under the assumptions of Theorem 2 asymptotic rationality still obtains.

9See, for example Sargent (1999), Preston (2005), Cogley and Sargent (2008).
10We view the social component of our learning algorithm as relatively unimportant, and note that all

results go through when N = 1.
11To be entirely precise, βQt is used as the agent’s perception of the value in period t of being unemployed

and therefore receiving a random wage draw in t+ 1.
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this perception the agent computes the sample mean of V (·, Qt) based on his sample of wage
draws. Since Qt encodes the information from all previous wage draws, the agent updates
his estimate of Q using a weighted average of Qt with this sample mean. Formally let

T̂ (ŵNt , Qt) = N−1
∑N

k=1
V (ŵt(k), Qt) (12)

denote the sample mean of V (·, Qt) based on the sample ŵNt . The agent is then assumed to
update his beliefs at the end of period t according to the algorithm

Qt+1 = Qt + γt+1

(
T̂ (ŵNt , Qt)−Qt

)
, (13)

where 0 < γt+1 < 1 is specified below. Thus the revised estimate of the value of being
unemployed Qt+1, which is carried by the agent into the next period, adjusts the previous
estimate Qt to reflect information obtained during period t.12

The term γt > 0, known as the gain sequence, is a deterministic sequence that measures
the rate at which new information is incorporated into beliefs. Two cases are of particular
interest. Constant-gain learning sets γt = γ < 1, which implies that agents discount past
data geometrically at rate 1−γ. This is often used when there is the possibility of structural
change, and is discussed in Section 3.4. Under decreasing-gain learning γt → 0 at a rate
typically assumed to be consistent with assumption C below. Decreasing gain is often
assumed in a stationary environment, and here provides for the possibility of convergence
over time to optimal beliefs. The following assumption is made when decreasing gain is
employed.
Assumption C: The gain sequence γt > 0 satisfies∑

t≥0

γt =∞ and
∑
t≥0

γ2
t <∞.

The conditions identified in Assumption C are entirely standard in the literature: see Bray
and Savin (1986), Marcet and Sargent (1989) and Evans and Honkapohja (2001). The first
condition guarantees that new information is provided sufficient weight to avoid spurious
convergence and the second condition ensures appropriate convergence obtains. A natural
example is γt = t−1 in which all observations from {1, . . . , t} receive equal weight. For the
case at hand this replicates a simple average.

The following theorem is the main theoretical result of our paper.

Theorem 2. (Asymptotic rationality) For any Q0, under Assumptions A, B and C,
Qt → Q∗ almost surely.

Theorem 2 establishes that in a stationary environment boundedly optimal agents will learn
over time to make fully optimal decisions. Section 4 explores the implications of learning
when there are structural changes.

12The algorithm (13), which is standard in the adaptive learning literature, can be viewed as an imple-
mentation of least-squares learning if γt = 1/t. See, for example, Ljung (1977), Marcet and Sargent (1989)
and Evans and Honkapohja (2001).
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A particular limiting case can help highlight the properties of this algorithm further.
Consider the algorithm as N → ∞. In this case, we can consider the agent as having full
knowledge of the wage offer distribution. In fact, in this case we have T̂ (ŵNt , Qt) → T (Qt),
where T is the T-map defined in the previous section. The evolution of beliefs is then given
by

Qt+1 = Qt + γt(T (Qt)−Qt).

Even though the agent has full knowledge of the offer distribution, she still needs to learn
how to behave optimally and she updates beliefs in a deterministic manner over time. In this
case, the square summability of the gain sequence is not needed for asymptotic convergence.
In fact, the algorithm with γt = 1 is equivalent to iterating the agent’s Bellman equation
over time. We note that, in this case, convergence obtains for all γt = γ ∈ (0, 1].

We view the learning rule (13) as providing a particularly appealing model of bounded
rationality. Its most striking aspect is its simplicity, i.e. its low demands on agents’ cognition
and memory: agents only need to store one piece of information each period, namely the
current value of Q; and its update requires only a simple average of very simple computations
based on observed current wages, i.e. the comparisons of employment and unemployment
values identified in equation (6). In particular, it is not necessary for agents to track the
history of wages or even perform any sophisticated statistical analysis.

The learning rule addresses several features that make dynamic optimization challenging.
For finiteN the wage distribution can only be learned asymptotically. IfN is large the sample
can be viewed as revealing all needed information about the wage distribution; however,
computing optimal beliefs Q∗ still requires a great deal of sophistication, as noted above.
Our learning rule does not require such sophistication; and further, it applies even in case
agents receive no current information about wage distribution beyond their own offer.

3.4 Learning with constant gain

Our central analytical result above addresses the case of decreasing gain, which can be
viewed as natural if the environment is stationary and agents perceive it to be stationary.
However, realistic economies are always susceptible to structural change, and thus present
environments in which our results do not formally apply. We view Theorem 2 as providing
credence to the use of otherwise identical algorithms in which agents discount older data in
order remain alert to structural change.13

Constant gain learning (CGL) algorithms are of particular interest. Analytic results for
the small constant-gain limit can be developed using stochastic approximation techniques,
though they are local in nature. Informally, for our model, these results imply that for large
t and small γ the distribution of beliefs Q is approximately normally distributed around Q∗

with variance proportional to γ. Since these formal results are small gain limits, in practice
stochastic simulations are used to study systems under CGL.

13This motivation has a venerable history in the literature on stochastic recursive algorithms: see Ljung
and Söderström (1983).
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Adaptive learning in applied models of macroeconomics and finance is often implemented
using CGL, in part because it allows the modeler to account for structural change in a natural
way, and in part because, in the absence of structural change, it provides for perpetual,
stationary learning dynamics.14 The prominent, early work of Sargent (1999) emphasized the
role of CGL in monetary policy issues; Bullard and Eusepi (2005) used CGL to understand
how the economy reacts to unexpected changes in trend productivity growth; and Milani
(2007) estimated DSGE models under the assumption that agents are constant-gain learners.
These are just a few examples within a broad literatures in macroeconomics and finance.

4 Structural Change and Transition Dynamics

We now take our model as populated by many agents; this allows for analysis of interesting
aggregates like the unemployment rate. Our applications in Section 5 will consider the time-
series and cross-section implications of BR in our model. To prepare for this it is useful to
study the implications for BR following a simple policy change, specifically an unexpected
change to unemployment compensation, b.

We begin with the study of comparative static and dynamic responses analytically under
rational expectations and optimal decision-making. We proceed by first studying these
dynamics under a fixed belief, Q, and then setting beliefs at the rationally optimal level Q∗.
In this manner, we decompose the responses into two terms: the direct effects hold beliefs
fixed while the indirect effects come through changes in Q∗. We then show numerically that
these two terms allow us to understand the dynamics of the BR agents. This decomposition
will be central to our analysis of the applications in Section 5.

4.1 Preliminaries

We begin by defining the variables of interest. Unemployment and duration, which will be
carefully defined below, depend inversely on what we call the “hazard” rate h of leaving
unemployment, i.e. the probability per period of an unemployed agent becoming employed.
Given beliefs Q and benefits level b the hazard rate is

h = h (Q, b) = (1− α)(1− F (w̄ (Q, b))).

For a given fixed Q, the perceived duration δ is defined to be the expected number of periods
of consecutive unemployment conditional on being newly unemployed, and a straightforward
computation provides that δ = h−1. Finally, we define u to be the corresponding ergodic
probability of ending the period unemployed; thus

u = u (Q, b) =
α

1− (1− α)F (w̄ (Q, b))
=

α

h (Q, b) + α
. (14)

The variables δ and u as just defined capture individual-level behavior; however, they
can be connected to aggregate counterparts. If we imagine an economy with a continuum of

14In particular, under decreasing gain the learning dynamics vanish asymptotically.
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agents with homogeneous beliefs Q that are held fixed for all t then u (Q, b) is the steady-state
unemployment rate for the economy. In particular, if Q = Q∗(b) then u∗ = u (Q∗(b), b) is the
long-run employment rate in an economy populated with a continuum of rational agents.

4.2 Comparative statics

We now assume our McCall model is populated by a continuum of rational agents, and con-
sider comparative statics associated with steady-state behavior. The rational counterparts
h∗, δ∗ (and u∗, as already noted above) are obtained from the above definitions by setting
Q = Q∗ = Q∗(b). To compute our comparative statics, we continue to adopt Assumption B
so that an interior solution exists; it follows from equation (9) that ∂w̄

∂Q
and ∂w̄

∂b
are positive.

In what follows we will compute several derivatives with respect to b. When differentiating
any variable other than Q∗ = Q∗(b), the symbol “∂” will indicate that beliefs Q are taken as
fixed and the symbol “d” will indicate that beliefs Q will vary in accordance with optimality,
i.e. Q∗ = Q∗(b). Finally, we note direct analysis provides that ∂Q∗

∂b
and ∂w∗

∂b
are positive.

The following Lemma decomposes the comparative statics of the hazard rate into the
direct and indirect effects mentioned earlier.

Lemma 2 (Direct and indirect effects). Under Assumption B,

dh∗

db
≡ ∂h

∂b
+
∂h

∂Q

∂Q∗

∂b
< 0,

with both ∂h
∂b
< 0 and ∂h

∂Q
∂Q∗

∂b
< 0.

Lemma 2 tells us that the hazard rate of leaving unemployment is decreasing in un-
employment benefits. This effect is decomposed into direct effect and indirect effects. ∂h

∂b

captures the direct effect: even if agents do not update their beliefs they will still react to
an increase in benefits by raising their reservation wage. Lemma 2 tells us that a rational
agent would respond even further by taking into account that higher unemployment benefits
also raise the value of Q∗. This is the indirect effect. While the hazard rate for the rational
agents exhibits no dynamics, i.e. it jumps from the old steady-state value to the new one,
under learning the hazard rate evolves over time as beliefs Q are updated. For this reason,
indirect effects are not initially incorporated into the boundedly rational agents’ hazard rate.

The inverse relationship between the hazard rate and both the unemployment rate and
duration yields the following Proposition.

Proposition 3 (Comparative statics). Under Assumption B, du∗

db
> 0 and dδ∗

db
> 0.

4.3 Comparative dynamics under rationality

With rational agents, only the unemployment rate experiences non-trivial transition dy-
namics; the hazard rate and duration for the newly unemployed simply jump to their new
steady state levels. The same would be true for boundedly optimal agents if their beliefs Q
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were constant over time; however, under learning the evolution over time of beliefs induces
transition dynamics in the hazard rate.

To examine unemployment dynamics it is helpful to define the notion of a “quit.” We
say that an agent employed in time t− 1 quits in time t, and thereby becomes unemployed,
if his wage in time t − 1 is less that w∗t . Here the t subscript allows for variations in the
optimal reservation wage induced by structural change. We observe that quits can only occur
when a structural change between periods t − 1 and t results in w∗t > w∗t−1. Therefore, to
simplify our analysis we will assume that a structure change at time 0 occurs only after a
long period of stability so that the economy has reached a long run steady state. We focus
on the dynamics of rational agents but, as in the previous section, we decompose changes in
unemployment into direct and indirect effects to shed light on the unemployment dynamics
with boundedly rational agents.

Let w−1 denote the wage of individual drawn randomly in period −1 from the pool of
employed individuals. The probability that this individual quits in period 0 is given by

q0 = q (w∗0) =
max

{
0, F (w∗0)− F (w∗−1)

}
1− F (w∗−1)

,

where we have exploited that the long run distribution of wages will be the distribution of
wage offers, F (·) truncated at the reservation wage w∗−1.

Interpreted cross-sectionally, q0 is the proportion of agents employed in time −1 who quit
in time 0. Now let ut be the proportion of agents who are unemployed in period t . Noting
that 1 − u is the proportion of employed agents, and that 1 − h is the probability that an
unemployed agent remains unemployed, the dynamics of ut may be written

ut = (1− ht)ut−1 + (α + (1− α)qt)(1− ut−1). (15)

We can use equation (15) to assess the impact response of unemployment driven by a change
in b, assuming that the economy is initially in steady state. Differentiation of (15) at t = 0
yields

du0

db
= −u∗dh

∗

db
+ (1− α)(1− u∗) dq

dw∗
· dw

∗

db
. (16)

It is important to emphasize here that we are differentiating q at the previous steady state
reservation wage, and while q is not differentiable at this point it is Gateaux differentiable
with

dq =

{
dF (w∗−1)

1−F (w∗−1)
dw∗ if dw∗ ≥ 0

0 if dw∗ < 0
.

These considerations lead to the following result:

Proposition 4 (Comparative dynamics: impact response under RE).

du0 =

{
1
u∗

du∗

db
db if db ≥ 0

α
u∗

du∗

db
db if db < 0.
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As 1
u∗

is much larger than one we can conclude that an unexpected increase in unem-
ployment benefits will result in an initial spike in unemployment many times of that of the
increase in steady state unemployment. On the other hand α/u∗ is necessarily less than one,
which implies that a decrease in benefits will result in a fall in unemployment smaller than
the fall in steady state.

Just as with the hazard rate, the change in steady-state unemployment can be decom-
posed into direct and indirect effects:

du∗

db
≡ ∂u∗

∂b
+
∂u∗

∂Q

∂Q∗

∂b
. (17)

Further, notice that these effects are both positive. This equation may be used in conjunction
with Proposition 4 to decompose the impact response du0 into direct and indirect effects.
With boundedly rational agents, indirect effects are not present on impact, so we can expect
the impact response of the BR model to be smaller.

4.4 Comparative dynamics under bounded rationality

We now use numerical methods to study comparative dynamics in our model. While the
direct and indirected effects of a benefits change are realized immediately and simultaneously
under RE, our boundedly rational agents only learn over time the effect of the change on Q,
leading to a delay in the realization of indirect effects.

The simulations in this Section, as well as in all subsequent sections, are based on the
following specifications and calibration. Simulations are conducted with a constant gain of
γ = 0.1 and with N = 1. The exogenous wage distribution is taken to be lognormal15 with

parameters µ, s > 0, yielding a median wage of eµ and variance e2µ+s2
(
es

2 − 1
)

. We set

µ = 11.0, s = 0.25. The value of µ corresponds to a median household wage of approximately
$60, 000, close to the US value in dollars in 2016. For the choice of s, what is relevant for
our model is the distribution of wage draws faced by the individual agent, i.e. not a measure
of the population wage distribution.16 At our baseline value, the interquartile income range
is $50, 583 to $70, 871. The lowest decile ends at w = $43, 460 and the highest decile begins
at w = $82, 486. We interpret our calibration as capturing the experience of an individual
interacting in a local labor market populated by individuals with similar characteristics.

The time unit is months and the discount rate is β = 0.996, in accordance with an
annual interest rate of 5.0%. The monthly separation rate, α, is set to be 3% to match the
rate computed by Shimer (2007). In addition we set b = $31, 200 to target a replacement rate

15Although lognormal does not impose wmin > 0 or wmax <∞, this is numerically indistinguishable from
setting wmin small and wmax large.

16Our value for s is broadly consistent with the literature. For example, p. 576 of Greene (2012) using
a pooled LS estimate of a log wage equation controlling for a number of individual specific characteristics,
obtains a residual variance of 0.146, i.e. s = 0.382. Krueger et al. (2016), estimate a log-labor earnings
process with persistent and transitory shock. They find that the variance of the transitory shocks, which are
the shocks more relevant for our model, is 0.0522, i.e. s = 0.23. The qualitative features of the simulations
are robust to values of s across this range.
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of 41%, as in Hornstein et al (2011). Finally, utility is CRRA with risk aversion parameter
σ > 0, and we set σ to 3.25 to match a job-finding rate of 43%, as computed by Shimer
(2007) under RE.
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Figure 1: Simulations of the RE and BR models given a 10% increase in benefits in period 50. Dotted and
dashed lines indicate pre- and post-shock steady states. The top panels show exaggerated impact responses
of unemployment and duration under RE relative to BR. The bottom panels provide the trajectories of
mean, quartile, and outer-decile values of agents’ beliefs and associated reservation wages.

Figure 1 presents a simulation of an economy with 100,000 agents who experience an
unexpected 10% increase in benefits in period 50. The horizontal (red) dotted lines represent
the pre-shock steady-state values values and the horizontal (blue) dashed lines represent
post-shock steady-state values.17

For fixed beliefs Q, an increase in benefits db results in an increase in the instantaneous
return U ′ (b) db to being unemployed, thereby raising the reservation wage. This the direct
effect emphasized in the previous Section. The corresponding indirect effect of a rise in
benefits is that it also raises the optimal present value Q∗ of being unemployed. For the

17All simulations are initialized by providing boundedly rational agents with beliefs in a small neighborhood
of the optimal value of Q, and with the percent of agents identified as unemployed corresponding to the
rational model’s steady-state unemployment rate. To eliminate transient dynamics the model is run for a
large number of periods before our simulation begins.
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rational agents both effects are instantaneous, whereas for the boundedly optimal agents,
the initial impact on the reservation wage is only through the increase in the instantaneous
return, with the impact from changes in Q developing over time.18

The decomposition into direct and indirect effects is evidenced in the bottom-right panel
of Figure 1. The dark thicker line represents the cross-sectional mean reservation wage,
with the thinner lines identifying quartile and outer-decile values. For the first 50 periods
reservation wages are distributed around the pre-shock RE value – the distribution reflects
the evolving beliefs of different agents as determined by their idiosyncratic sample draws. At
time t = 50 there is a sharp increase in the distribution of reservation wages due to the rise
in b. Subsequently over time, as evidenced in the bottom-left panel, agents’ beliefs converge
to a distribution around the new optimal value of Q, and the distribution of corresponding
reservation wages evolves to a distribution around the new RE value.

Turning to unemployment duration, the time series presented in the top-right panel
gives, at each point in time, the realized cross-agent average, conditional on being newly
unemployed, of the number of periods until the agent is next employed. For rational agents
the expected unemployment duration for the newly unemployed jumps to the new steady-
state duration level, whereas, because their w̄ does not fully adjust immediately, boundedly
rational agents are initially more likely than their rational counterparts to take jobs, leading
to a more gradual adjustment of the duration.

Finally, we consider the unemployment time series, in the top-left panel, which dramati-
cally illustrates the discrepancy in behavior of the optimal and boundedly optimal agents at
the time of the policy change. As noted in the previous Section, an increase in benefits leads
to an increase in the rational-agent steady-state unemployment rate. The translucent (blue)
path identifies the unemployment rate associated with rational model. This time series ex-
hibits a very large spike at the time of the shock, which reflects the impact response identified
in the discussion following Proposition 4. This spike can be explained by the behavior of the
associated reservation wage: because optimal agents experience both the direct and indirect
effects at the instant of the change in b, their reservation wage rises immediately to the
new optimal level, which causes a dramatic rise in unemployment resulting from previously
employed agents not accepting their wage offers. The behavior of the boundedly optimal
agents is similarly explained, but is muted by the failure of the indirect effect to materialize
immediately.

A decrease in the benefit rate induces less drama, thus we dispense with the figure:
the unemployment rate falls, as one would expect, but there is no overshooting spike in
either the rational or boundedly rational case. This is easily understood: when benefit rates
rise, employed agents with low wages immediately quit their jobs to capture the increased
benefit of being unemployed; however, when benefits fall, all employed agents have increased
incentives to retain their jobs and unemployed agents are willing to accept lower wages, but
not to the extent that overshooting is implied.

18The delayed onset of the indirect effect reflects in part the simplicity of our learning rule. A more
sophisticated agent who has available the history of wage offers could, in principle, learn more quickly.
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5 Applications

To illustrate the potential of our approach to address some labor market phenomena that
are not easily explained by standard models, we consider two prominent empirical puzzles
in the labor-search literature.

5.1 Application 1: unemployment and the business cycle

Shimer (2005) emphasized the inability of labor-search models to adequately amplify and
propagate productivity shocks. The failure of productivity shocks to generate realistic un-
employment dynamics reflects, in part, the sophisticated decision-making behavior of the
model’s rational agents: a negative shock to serially-correlated productivity raises the rel-
ative value of unemployment benefits (the direct effect) and lowers the expected value of
random job offers (the indirect effect). These effects countervail, mitigating the overall im-
pact of the shock.

In this section we investigate the potential for bounded rationality to move the needle
on the Shimer puzzle. We begin by noting that a random wage draw can be interpreted
as the realization of idiosyncratic match productivity. With this in mind, we consider an
extension of the model in which the realized wage W is the product of the idiosyncratic
component w and a time-varying aggregate productivity shock, z; thus W = z ·w. First we
develop the model under rational expectations, taking z as observable; then we turn to an
implementation of bounded rationality centered on the assumption that agents only observe
their realized wage W , and are either unaware of, or for whatever reason fail to account for
the stochastic variation induced by the aggregate shock.19

An implication of our modeling assumptions is that agents have a misspecified forecast
model in the sense that a superior model conditioning on the realized productivity shock
is available. By inducing overly optimistic and pessimistic decision-making, this misspecifi-
cation exaggerates the effects of productivity shocks: it amplifies the impact response of a
change in productivity and magnifies the medium run “boom-bust” discrepancy between the
high and low unemployment rates. We find that the boom-bust discrepency is much higher
under bounded rationality: in the medium run the BR model has higher highs and lower
lows. Couple this finding with the amplification, under BR, of the impact response, and
we conclude that bounded rationality provides a simple mechanism for moving the Shimer
puzzle’s needle.

5.1.1 Productivity shocks with rational agents

As indicated above, we assume that an agent’s realized wage has two (stochastically orthog-
onal) components: idiosyncratic match productivity, w, and aggregate productivity, z. Job
offers, which we now think of as indexed by w, are realized just as in the earlier model, i.e.

19An alternative approach is through the information frictions literature: see Kennan (2010) and Morales-
Jimenez (2017). Comparing the implications of this approach with ours would be of considerable interest.
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as random draws from the distribution F , and the wage W associated with job-offer w is
W = z · w.

The fully rational agent is assumed to observe the aggregate state, and to understand
and account for its stochastic structure; thus the principal conceptual variables used to
understand the rational agent’s behavior are state dependent: V (w, z) is the perceived value
of holding job-offer w; Q∗RE(z) = EwV (w, z) is the expected value of receiving a random job
offer; and w∗RE(z) is the reservation wage.20 The rational agent’s program may be written as
follows:

V (w, z) = max {U(b) + βEz′ (Q
∗
RE (z′) |z) , U(z · w)

+αβEz′ (Q
∗
RE (z′) |z) + (1− α)βEz′ (V (w, z′) |z)} .

The solution to this program can be analyzed using standard recursive techniques.
For the simple assessment of this section we assume z follows a 2-state Markov process,

with states zL < 1 < zH , transition matrix P such that Pij > 0, and stationary distribution
π = {πL, πH}; whence Q∗RE and w∗RE are also 2-state. Unemployment dynamics are given by
equation (15), though computation of the quit rate is somewhat more involved.

5.1.2 Productivity shocks with boundedly rational agents

The boundedly rational agent is assumed to observe the realized wage W associated with
his job offer; however, when making forecasts and deciding whether to accept a job offer, the
agent is either unaware of, or anyway fails to account for the impact of aggregate productivity
on his future realized wages. An implication of this assumption is that agents are restricted
to making decisions based on perceptions Q that do not condition on z.

In more detail, for given perceptions, Q, the agent’s behavior is characterized by his
reservation wage W (Q), as determined by φU

(
W
)

= U(b) + β(1− αφ)Q. Let V (W,Q) be
the perceived value of holding a job offer with realized wage W , and define

T (Q) = πzL

∫
V (zL · w,Q) dF (w) + πzH

∫
V (zH · w,Q) dF (w).

The unique fixed point of T , denoted by Q∗BR, identifies self-fulfilling beliefs on the part of
agents.

As usual, the BR agent’s reservation wage W experiences both direct and indirect effects.
Consider, for example, the onset of a bust in period t. Because beliefs Qt are slow to adjust,
the fall in productivity induces no change in W (Qt); however, an employed agent’s wage
offer, which was Wt−1 = zH ·wt−1 and is now Wt = zL ·wt−1, falls sharply. Those agents with
Wt < W̄ quit, inducing a spike in unemployment: this is the direct effect. Importantly, the

20Note that in the modified model the reservation wage might more aptly be named “the reservation
wage-index.” Also, the subscript “RE” on Q∗ and w∗ is needed to distinguish the rational values from the
boundedly-rational counterparts, which are discussed in the next section. Finally, here and throughout this
section a subscript on the expectations term indicates the random variable against which the expectation is
taken.
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boundedly rational agent fails to recognize that his low wage offer reflects declining economic
conditions, and thus he views his wage offer with excess pessimism relative to the rational
agent. In this way, the magnitude of the direct effect is amplified in the BR economy. The
indirect effect via changing beliefs is amplified analogously.

The dynamics of an economy populated by boundedly rational agents is recursively as-
sessed exactly as in our earlier model. Figure 2 provides the unemployment paths of a
simulated economy, for the rational (left panel) and boundedly rational (right panel) pop-
ulations. The calibration used here is the same as in Section 4, and the time scale is in
months. The BR simulation includes 100,000 agents. Following Krusell and Smith (1998),
the productivity shocks are ±1.0%, and the transition matrix is tuned to accord with median
cyclic durations in the post-war era: a median boom length of 58 months and a median bust
length of 10 months.21 Gray regions correspond to (simulated) recessions, and simulations
were initialized in a bust.
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Figure 2: Unemployment dynamics with aggregate productivity shocks. Shaded strips indicate recessions
and horizontal lines identify medium-run unemployment levels. The left panel demonstrates the Shimer
puzzle, the muted unemployment response of the RE model to productivity shocks, and the right panel
shows the potential for BR to resolve the puzzle.

5.1.3 Business cycle amplification

Figure 2 provides evidence for the amplification of business cycles induced by bounded ra-
tionality. While the unconditional mean unemployment rates for the rational and boundedly
rational economies are the same, at 6.67%, the simulated productivity shocks induce much
more volatility in the BR economy. Two features of the BR model’s unemployment dynam-
ics distinguish it from its RE counterpart: an amplified impact response in case of negative
shocks, and a more persistent phenomenon referred to earlier as the boom-bust discrepancy.

To understand the amplified response on impact, consider a fall in productivity. Because
the direct effect dominates, the fall causes a rise in the unemployment rate in both the

21November 1948 to February 2020. Source: https://www.nber.org/cycles/cyclesmain.html
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rational and BR economies. However, as discussed above, due to model misspecification, the
magnitude of the direct effect is larger in the BR economy. Also, in the rational model, the
rise unemployment is mitigated by the indirect effect, whereas no such mitigation is present
in the BR model – agents have to learn about the effect of the shock on Q – and so the
impact response is much larger. This is evident in Figure 2, where we see that the maximum
unemployment rate is well over 11.0% in the BR case, while not even reaching 8.0% in the
rational case.

Turning to the boom-bust discrepancy, let u∗RE(z) and u∗BR(z) be the medium-run unem-
ployment levels, i.e. the levels corresponding to holding zt = z indefinitely and with beliefs
held at Q∗BR in the BR case. For the calibration under consideration, we have

u∗BR (zH) < u∗RE (zH) < u∗RE (zL) < u∗BR (zL) . (18)

The middle inequality captures the dominance of the direct effect. That the unemployment
levels under bounded rationality are more extreme reflects the pessimism of BR agents
induced by model misspecification: even after the impact response has unwound BR agents
remain excessively pessimistic about their wage offers W , resulting in an amplification of the
boom-bust discrepancy relative to the rational model.

In Figure 2, the upper horizontal dashed, respectively dotted, lines corresponds to u∗RE (zL),
respectively u∗BR (zL) and the lower ones to u∗RE (zH) and u∗BR (zH). The boom-bust discrep-
ancy is measured as the distance between these lines, and we observe that for the BR model
it is much larger than for the rational model – nearly an order of magnitude larger.22

Bounded rationality introduces two mechanisms through which the impact of productivity
shocks on unemployment can be magnified. Due to forecast-model misspecification, the
boom-bust discrepancy is much higher in the BR model; and due also to short-run absence
of the indirect effects, the amplitudes of the unemployment spikes resulting from a fall in
productivity are much more pronounced in the BR model. Admittedly, these results are only
suggestive in nature: ours is a highly-stylized partial equilibrium environment only modestly
calibrated to the data. However, the potential for BR to enrich unemployment dynamics in
labor search models, and gain ground on the Shimer puzzle, appears incontrovertible.

5.2 Application 2: frictional wage dispersion

As noted in the Introduction, a puzzling result in search theory concerns the size of the
frictional wage dispersions generated by search models. HKV illustrate this by constructing
a measure of frictional wage dispersion: the mean-min (Mm) ratio, defined as the ratio of
the ergodic mean of accepted wages relative to the ergodic minimum of accepted wage offers.
HKV document how standard search models fail to generate the Mm ratios observed in the
data. This feature is also present in our model. Under rational expectations, our calibration
presented in Section 4 yields an Mm ratio of 1.22, which is well short of the empirical range
of 1.5 to 2 documented by HKV. HKV highlight that this low Mm ratio produced by their

22u∗RE (zH) = 6.60%, u∗RE (zL) = 6.68%, u∗BR (zH) = 6.57%, u∗BR (zL) = 7.04%.
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calibrated search model is a result of matching the short unemployment durations observed
in the US.

Intuitively, a high frictional wage dispersion would imply a high option value of search
which would then imply longer unemployment durations. The fact that we observe short
unemployment durations in the US data implies that workers do not find it worthwhile to
wait which, in turn, implies that there must be little frictional wage dispersion. This logic
relies on rational expectations and, specifically, the ability of agents to fully incorporate
the value of search in their decision making. The presence of bounded rationality makes it
possible for agents to have incorrect beliefs regarding the value of search and, as a result, for
there to be additional variation in accepted wage offers.

Our learning framework allows us to evaluate the plausibility of this mechanism. Since job
separation rates vary significantly over time and the business cycle, we extend our baseline
model to allow for agents also to form beliefs about the separation probability α. The agents
treat α as unknown and learn about it, from their own observations, using a constant gain
algorithm in order to be robust to possible structural changes.23 The learning dynamics of
Qt are otherwise the same as described in Section 3. Given a wage offer ŵt, and given beliefs
about the value of unemployment Qt and about the job separation rate αt, the value of a
wage offer is given by

V (ŵt, Qt, αt) = max {U(b) + βQt, φtU(ŵt) + βαtφtQt} ,

where φt = (1− β(1− αt))−1. All the calibration parameters are the same as the previous
section.

To evaluate the Mm ratio in the boundedly rational model we first simulate the stationary
joint distribution of beliefs, wages and unemployment, and then compute the ratio of the
mean wage to the minimum wage within the ergodic distribution. For our baseline calibration
we find an Mm ratio of 1.9, which is significantly higher that the value of 1.2 observed in the
RE model and is on the high end of the 1.5 - 2 range found by HKV. To gain an intuition
for this result, observe that the solid black line in the left panel of Figure 3 plots the density
of the ergodic distribution of reservation wages for our standard calibration of the gain at
γ = 0.1. The distribution of reservation wages in the rational expectations equilibrium
is a mass point represented by the red line. The learning behavior of the agents induces
a non-trivial distribution of beliefs around the rational exceptions value and, whence, a
corresponding distribution of reservation wages. A direct consequence of this is a larger Mm
ratio relative to rational expectations. In line with the learning literature, larger gains result
in greater variation in beliefs, which explains why we see larger values of the Mm ratio as
we increase the gain parameter in the right panel of Figure 3.

23We note that while agents are concerned about, and alert to the possibility of structure change, for our
analysis here α is kept fixed.
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Figure 3: The left panels plot the stationary distribution of reservation wages under BR for different gains
γ, i.e. different rates of data discounting, and also provides the (degenerate) distribution of reservation
wages under RE (red vertical line). The non-trivial distributions under BR lead to increased wage dispersion
relative to RE. The right panel plots the mean/min measure of wage dispersion for varying gain (black) and
the measure for RE (red). BR with gains larger than 0.03 are consistent with the range found by HKV.

6 Conclusions

We consider boundedly optimal behavior in a well known partial-equilibrium model of job
search. Boundedly optimal decision-making depends on a univariate sufficient statistic that
summarizes the perceived value to the job-seeker of receiving a random wage draw. Following
the adaptive learning literature, agents update their perceived values over time based on their
current perceptions and observed wage draws. We show that, in a stationary environment
and under natural assumptions, this learning algorithm is globally stable: given any initial
perception, our boundedly optimal agents learn over time to make optimal decisions.

In application our bounded rationality approach shows promise to resolve several em-
pirical puzzles. While our results were applied in partial equilibrium setting, embedding
this learning behavior in a general equilibrium environment would be feasible, and is an
important direction for future research.
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Appendix A: Proofs of results in Section 3
Proof of Lemma 1. First, observe that the agent rejects the wage offer w if and only if

φU(w) ≤ U(b) + β(1− αφ)Q. (19)

The argument is completed by addressing the following three cases:

1. If Q > Qmax then condition (19) always holds; thus w̄(Q) = wmax, the agent rejects
any offer and receives U(b) + βQ.

2. If Q < Qmin then condition (19) never holds; thus w̄(Q) = wmin, the agent accepts any
offer w and receives φU(w) + βαφQ.

3. Finally, if Qmin ≤ Q ≤ Qmax then

φU (wmin) ≤ U(b) + β(1− αφ)Q ≤ φU (wmax) . (20)

Since U ′(w) > 0 it follows that for each Q ∈ [Qmin, Qmax] there is a unique w̄(Q) ∈
[wmin, wmax] such that

φU(w̄(Q)) = U(b) + β(1− αφ)Q,

and further that, in this case, condition (19) holds if and only if w ≤ w̄(Q).

It remains to show that, so defined, w̄ is differentiable on (Qmin, Qmax). Since u is C2,
by the implicit function theorem, it follows that for each Q ∈ (Qmin, Qmax) there is an
open set U(Q) ⊂ (Qmin, Qmax) and a differentiable function gQ : U(Q) → [wmin, wmax]
such that for all Q′ ∈ U(Q),

φU(gQ(Q′)) = U(b) + β(1− αφ)Q′,

and, further, by uniqueness of w̄(Q′), we may conclude that w̄ = gQ on U(Q). Since
the U(Q) cover (Qmin, Qmax) the proof is complete. �

To establish Theorem 1 we need the following technical result:
Lemma A.1. If f : R → R is continuous, if f is differentiable except at perhaps a finite
number of points, and if the derivative of f , when it exists, is positive except at perhaps a
finite number of points, then f is strictly increasing.
Proof: In the context of this proof, we say that x0 is anomalous if either f ′(x0) does not
exist or f ′(x0) ≤ 0. We begin by assuming f has only one anomalous point x0. Because
the derivative is positive for x 6= x0, it suffices to show that if x < x0 then f(x) < f(x0)
and if x > x0 then f(x) > f(x0). Suppose x < x0. By the mean value theorem applied
to [x, x0], which requires that f be continuous on [x, x0] and differentiable on (x, x0), there
exists x∗ ∈ (x, x0) such that

f(x0)− f(x)

x0 − x
= f ′(x∗), or

f(x0)− f(x) = f ′(x∗) (x0 − x) > 0.
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An analogous argument holds if x > x0. Finally, this argument is easily generalized to
account for a finite number of anomalous points. �

The following Lemma, which is referenced in the main text, establishes important prop-
erties of the T-map, including an upper bound on its derivative.

Lemma A.2. The map given by (10) is continuous on R, differentiable everywhere except
possibly Qmin and Qmax, and 0 < DT ≤ β < 1 whenever it exists.

Proof. Using Lemma 1, direct computation yields the following formulation of the T-map:

T (Q) =


αβφQ+ φ

∫ wmax

wmin
U(w)dF (w) if Q < Qmin

(U(b) + βQ)F (w̄(Q)) + (1− F (w̄(Q))) βαφQ
+φ
∫ wmax

w̄(Q)
U(w)dF (w)

if Qmin ≤ Q ≤ Qmax

U(b) + βQ if Q > Qmax

.

Clearly DT (Q) > 0. It further follows from Lemma 1 that the map T is continuous on R
and differentiable everywhere except possibly Qmin and Qmax. Next we compute an upper
bound on DT . If Q < Qmin then DT (Q) = βαφ < β, where the inequality follows from
αφ ∈ (0, 1). If Q > Qmax then DT (Q) = β. Finally, if Qmin < Q < Qmax we may compute

DT (Q) = (U(b) + βQ) dF (w̄)
∂w̄

∂Q
+ βF (w̄)− (φU(w̄) + βαφQ)dF (w̄)

∂w̄

∂Q

+ (1− F (w̄)) βαφ

= β (F (w̄(Q)) + (1− F (w̄(Q)))αφ) < β,

where the second equality exploits the definition of w̄. �

Proof of Theorem 1. We begin the proof by establishing that the T-map has a unique
fixed point. Let

Q̂ ≤ min

{
φU(wmin)

1− αβφ
,Qmin

}
.

We claim that T (Q̂) > Q̂. Indeed,

T (Q̂) = αβφQ̂+ φ

∫ wmax

wmin

U(w)dF (w) > αβφQ̂+ φU(wmin) ≥ Q̂.

Next, let h : R→ R be defined as

h(Q) = T (Q̂) + β(Q− Q̂).

We claim Q ≥ Q̂ implies h(Q) ≥ T (Q). Indeed let H(Q) = h(Q) − T (Q). Then H is
continuous and H ′(Q) > 0 except perhaps at Qmin and Qmax. Thus by Lemma A.1, H is
strictly increasing. The claim follows from the fact that H(Q̂) = 0.

Finally let Q̌ ≡ (1− β)−1
(
T (Q̂)− βQ̂

)
. Then

Q ≥ Q̌⇒ h(Q) < Q⇒ T (Q) < Q.
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Thus we have T (Q̂) > Q̂ and T (Q̌) < Q̌. Since T is continuous, the existence of a fixed point
Q∗ is guaranteed by the intermediate value theorem. Finally, let S(Q) = Q − T (Q). Then
S is continuous and S ′(Q) > 0 except perhaps at Qmin and Qmax. Thus by Lemma A.1, S is
strictly increasing, from which it follows that the fixed point of T is unique.

Now we turn to connecting Q∗ to the Bellman functional equation (1), which we repeat
here for convenience:

V (w) = max
a∈{0,1}

U (c(a, w)) + βE (V (w′)|a, w)

w′ = g(w, a, ŵ, s).

The binary nature of the choice variable makes this problem accessible. Specifically,

E (V (w′)|0, w) =

∫
V (ŵ)dF (ŵ)

E (V (w′)|1, w) = (1− α)V (w) + α

∫
V (ŵ)dF (ŵ).

It follows that

a = 0 =⇒ V (w) = U(b) + β

∫
V (ŵ)dF (ŵ) (21)

a = 1 =⇒ V (w) = U(w) + β(1− α)V (w) + αβ

∫
V (ŵ)dF (ŵ), or

a = 1 =⇒ V (w) = φU(w) + φαβ

∫
V (ŵ)dF (ŵ), (22)

where φ = (1 − β(1 − α))−1. We conclude that the Bellman functional equation may be
rewritten as

V (w) = max

{
U(b) + β

∫
V (ŵ)dF (ŵ), φU(w) + φαβ

∫
V (ŵ)dF (ŵ)

}
. (23)

Now define Q̃ =
∫
V (ŵ)dF (ŵ), which may be interpreted as the value of having a random

draw from the exogenous wage distribution. Then equation (23) becomes

V (w) = max
{
U(b) + βQ̃, φU(w) + φαβQ̃

}
, (24)

from which it follows that

Q̃ =

∫
V (w)dF (w) =

∫ (
max

{
U(b) + βQ̃, φU(w) + φαβQ̃

})
dF (w). (25)

Using Lemma 1 we may write∫ (
max

{
U(b) + βQ̃, φU(w) + φαβQ̃

})
dF (w)

= (U(b) + βQ̃)F
(
w̄
(
Q̃
))

+ φ

∫ wmax

w̄(Q̃)
U(w)dF (w) + φαβQ̃

(
1− F

(
w̄
(
Q̃
)))

.
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We conclude that equation (25) can be written

Q̃ = (U(b) + βQ̃)F
(
w̄
(
Q̃
))

+ φ

∫ wmax

w̄(Q̃)
U(w)dF (w) + φαβQ̃

(
1− F

(
w̄
(
Q̃
)))

= T (Q̃),

where the last equality follows from the definition of T . Since the T-map has a unique fixed
point Q∗, we conclude that Q̃ = Q∗. By equation (24) Q̃, and hence Q∗, uniquely identifies
V , the solution to the Bellman system. It follows from equation (6) that V (w) = V (w,Q∗).
Finally, Proposition 1 implies w∗ = w̄(Q∗). �

To prove Theorem 2, we require the following technical Lemma:
Lemma A.3. Suppose that γn is a sequence of positive numbers satisfying

∑
n γ

2
n < ∞.

The following are equivalent:

Lemma 3. a.
∑

n γn =∞.

b. There exists λ > 0 such that
∏

n(1− λγn) = 0.

c.
∏

n(1− λγn) = 0 for all λ > 0.

Proof. Denote by
{
γNn
}

the N -tail of {γn}, that is, γNn = γN+n. It will be helpful to
observe that since γn → 0, given ε > 0 there is an N > 0 so that γNn < ε for all n > 0.
(a ⇒ c). Let λ > 0 and choose N2(λ) > 0 so that λγN2

n < 1 for all n > 0. By the concavity
of the logarithm, we have that

log
(
1− λγN2

n

)
< −λγN2

n .

Now define

PN2
M (λ) =

M∏
n=1

(1− λγN2
n ),

and observe that

logPN2
M (λ) < −λ

M∑
n=1

γN2
n .

Since by assumption
∑∞

n=1 γ
N2
n = ∞, it follows that logPN2

M (λ) → −∞, or PN2
M (λ) → 0 as

M →∞. Finally, notice that

∞∏
n

(1− λγn) =

N2−1∏
n=1

(1− λγn) lim
M→∞

PN2
M (λ) = 0,

establishing item c.
(b⇒ a). Suppose λ > 0 is so that

∏
n(1− λγn) = 0. Choose N1 > 0 so that λγN1

n < 1 for all
n > 0. Let γ̂ = supn γ

N1
n < λ−1, and write

log
(
1− λγN1

n

)
= −λγN1

n +
(
λγN1

n

)2
F (λγN1

n ),

29



where F is a continuous function on [0, γ̂]. Define

PN1
M (λ) =

M∏
n=1

(1− λγN1
n ),

and observe that

logPN1
M (λ) = −λ

M∑
n=1

γN1
n +

M∑
n=1

(
λγN1

n

)2
F (λγN1

n ).

Let
F̂ = sup

γ∈[0,γ̂]

|F (λγ)| <∞.

It follows that
∞∑
n=1

(
λγN1

n

)2 |F (λγN1
n )| ≤ F̂ λ2

∞∑
n=1

(
γN1
n

)2
<∞,

and thus there exists δ ∈ R so that

M∑
n=1

(
λγN1

n

)2
F (λγN1

n )→ δ as M →∞.

By assumption, PN1
M (λ)→ 0 and thus logPN1

M (λ)→ −∞ as M →∞. Thus

−∞ = lim
M→∞

logPN1
M (λ) = lim

M→∞

(
−λ

M∑
n=1

γN1
n +

M∑
n=1

(
λγN1

n

)2
F (λγN1

n )

)

= − lim
M→∞

λ
M∑
n=1

γN1
n + lim

M→∞

M∑
n=1

(
λγN1

n

)2
F (λγN1

n )

= −λ lim
M→∞

M∑
n=1

γN1
n + δ.

It follows that

∞ = lim
M→∞

M∑
n=1

γN1
n <

∞∑
n=1

γn,

thus establishing item a.
That (c⇒ b) is trivial and the proof is complete.

Proof of Theorem 2. Define

Q = max

{
φU(wmax)

1− βαφ
,
U(b)

1− β

}
and Q = max

{
φU(wmin)

1− βαφ
,
U(b)

1− β

}
,

where we note that by Assumption B Q < Q. It is clear from equation (7) of Lemma 1

that T̂ (Q, ŵNt ) < Q and T̂ (Q, ŵNt ) > Q for all samples ŵNt . It follows that for any initial Q
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the sequence is eventually in [Q,Q]. Thus, without loss of generality, we can assume that

Q0 ∈ [Q,Q] and therefore that Qt ∈ [Q,Q] for all t ≥ 1.
From equation (12) we have that

Qt+1 −Q∗ = Qt −Q∗ + γt+1

(
T̂ (Qt, ŵ

N
t )−Qt

)
.

Denote by Et(·) the expectations operator conditional on all information available before
the time t wage sample is drawn. Observe that

Et

(
T̂ (Qt, ŵ

N
t )
)

= N−1
∑N

k=1
Et max

{
φU (ŵt(k)) + βαφQt

U(b) + βQt

}
= N−1

∑N

k=1
EtV (ŵt(k), Qt) = N−1

∑N

k=1
T (Qt) = T (Qt).

The second equality follows from (6) and the third equality follows from (10) and the random
sample assumption. Using this observation we may compute

Et[(Qt+1−Q∗)2] = (Qt−Q∗)2 + 2γt+1(Qt−Q∗)(T (Qt)−Qt) +γ2
t+1Et

[(
T̂ (Qt, ŵ

N
t )−Qt

)2
]
.

As [Q,Q] is compact and T̂ is continuous in Q there exists M > 0 such that

Et

[(
T̂ (Qt, wt+1)−Qt

)2
]
≤M

for all Qt ∈ [Q,Q].
Note that if f : [a, b] → R is continuous and is differentiable everywhere except at a

finite number of points a < x1 < · · · < xn < b, and, where defined, if f ′(x) < β then for all
a < x < y < b we have that

f(y)− f(x)

y − x
≤ β.

To see this, suppose, for example, that a < x < x1 < y < x2. Then

f(y)− f(x)

y − x
=

f(y)− f(x1) + f(x1)− f(x)

y − x

≤ β(y − x1) + β(x1 − x)

y − x
= β.

The general result is then easily verified.
Applying this observation to T , and using the facts that T ′(Q) ≤ β for all Q except

possibly at Qmax and Qmin, and that T (Q∗) = Q∗, it follows that

T (Q)−Q
Q−Q∗

≤ β − 1
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for all Q. Define λ = −2(β − 1) > 0. Then

Et[(Qt+1 −Q∗)2] ≤ (Qt −Q∗)2 + 2γt+1(Qt −Q∗)(T (Qt)−Qt) + γ2
t+1M

≤
(

1 + 2γt+1
T (Qt)−Qt

Qt −Q∗

)
(Qt −Q∗)2 + γ2

t+1M

≤ (1− λγt+1)(Qt −Q∗)2 + γ2
t+1M. (26)

Following the proof strategy of Bray and Savin (1986), define

ct = (Qt −Q∗)2 +

(
∞∑
k=t

γ2
t+1

)
M.

From Equation (26) we know that ct is a sub-martingale since

Etct+1 = Et[(Qt+1 −Q∗)2] +

(
∞∑

k=t+1

γ2
t+1

)
M

≤ (1− λγt+1)(Qt −Q∗)2 + γ2
t+1M +

(
∞∑

k=t+1

γ2
t+1

)
M

≤ (Qt −Q∗)2 +

(
∞∑
k=t

γ2
t+1

)
M = ct.

As ct is bounded from below by 0, we apply the Martingale Convergence Theorem to conclude
that ct converges to some random variable c̃ almost surely. This immediately implies that
(Qt−Q∗)2 converges to some random variable D̃ almost surely. It remains to be shown that
D̃ = 0 almost everywhere, and thus Qt → Q∗ almost surely.

Suppose not, then E(D̃) > 0. Convergence almost surely then implies that there exists
L > 0 and t∗ > 0 such that E(Qt−Q∗)2 ≥ L for all t ≥ t∗. Taking expectations of Equation
(26) we have that

E[(Qt+1 −Q∗)2] ≤ (1− λγt+1)E[(Qt −Q∗)2] + γ2
t+1M.

Since γt → 0, we can choose any N > t∗ such that γt+1 ≤ Lλ
2M

for all t ≥ N . It follows that

E[(Qt+1 −Q∗)2] ≤
(

1− λ

2
γt+1

)
E[(Qt −Q∗)2]

for all t ≥ N . We therefore conclude that

E[(Qt −Q∗)2] ≤ E[(QN −Q∗)2]
t−1∏
k=N

(
1− λ

2
γk+1

)
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for all t ≥ N . By Lemma A.3, Assumption C implies that
∏∞

k=N

(
1− λ

2
γk+1

)
= 0 and thus

E(D̃) = lim
t→∞

E[(Qt −Q∗)2] = 0,

which is a contradiction. Therefore, we conclude that Qt → Q∗ almost surely. �

Appendix B: Proofs of results in Section 4

Computation of δ(Q, b). Let

ψ = ψ(Q, b) ≡ F (w̄(Q, b)) + α (1− F (w̄(Q, b))) ,

which is the probability of being unemployed at the end of the current period conditional on
being unemployed at end of the previous period. Then

δ(Q, b) = 1 · (1− ψ) + 2 · ψ · (1− ψ) + 3 · ψ2 · (1− ψ) + . . .

= (1− ψ)
∑
n≥0

(n+ 1)ψn =
1

(1− α) (1− F (w̄(Q, b)u))
.�

Proof of Lemma 2. We begin by showing that Q∗b > 0. Implicit differentiation yields
Q∗b = (1 − DT (Q∗))−1Tb(Q

∗) > 0. As shown in the proof of Lemma A.2, DT (Q) ∈ (0, 1).
Also, since Q∗ is in the interior, the T-map is given locally by

T (Q) = (U(b) + βQ)F (w̄) + βαφQ(1− F (w̄)) + φ

∫ wmax

w̄(Q)

U(w)dF (w). (27)

Direct computation yields

Tb(Q
∗) = F (w∗)U ′(b) + (U(b) + βQ∗ − βαφQ∗)dF (w∗)w∗b − φU(w∗)dF (w∗)w∗b

= F (w∗)U ′(b) + [U(b) + βQ∗ − (φU(w∗) + βαφQ∗)] dF (w∗)w∗b = F (w∗)U ′(b) > 0,

where the term in square brackets equals zero by (8). It follows that Q∗b > 0
To conclude, we need only establish that ∂h

∂b
< 0 and ∂h

∂Q
< 0. Since h = (1− α)(1− F ),

we may compute

∂h

∂b
= −(1− α)dF (w∗)

∂

∂b
w̄ (Q∗, b) < 0 and

∂h

∂Q
= −(1− α)dF (w∗)

∂

∂Q
w̄ (Q∗, b) < 0,

where the inequalities follow from equation (9).�

Proof of Proposition 4. First observe that

du0 = −u∗dh+ (1− α)(1− u∗)qwdw. (28)
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Next, notice that

u∗ =
α

h+ α
=⇒ −u∗dh = α

du∗

u∗
. (29)

If db < 0 then dq = qwdw = 0. It follows from equations (28)-(29) that

du0 = α
du∗

u∗
.

Turning now to the case db ≥ 0, and using the definition of h to get dh = −(1− α)dF and
that dq = (1− F )−1 dF , we have that

dh = −(1− α)(1− F )dq = −hdq.

Plugging into equation (28) we find

du0 = α
du∗

u∗
− (1− α)(1− u∗)

h
dh

= α
du∗

u∗
−
(

1− α
α

)
u∗dh

= α
du∗

u∗
+

(
1− α
α

)
α
du∗

u∗

=
du∗

u∗

as desired.
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[16] Ljung, L. and Söderström, T. (1983), Theory and Practice of Recursive Identification,
MIT Press, Cambridge MA.

[17] Ljungqvist, L. and Sargent, T.J. (2012), Recursive Macroeconomic Theory, 3rd ed.,
MIT Press, Cambridge,MA.

[18] Lucas, R. and Prescott, E., (1974), Equilibrium search and unemployment, Journal of
Economic Theory 7, 188-209.

[19] Marcet, A. and Sargent, T.J. (1989), Convergence of least squares learning mechanisms
in self-referential linear stochastic models, Journal of Economic Theory 48, 337-368.

[20] Marimon, R., McGrattan E. and Sargent, T.J. (1990), Money as a medium of exchange
with artificially intelligent agents, Journal of Economic Dynamics and Control 14, 329-
373.

[21] McCall, J.J. (1970), Economics of information and job search, Quarterly Journal of
Economics 84, 113-126.

[22] Milani, F. (2007), Expectations, learning and macroeconomic persistence, Journal of
Monetary Economics 54, 2065-2082.

[23] Morales-Jimenez, C., (2017), The cyclical behavior of unemployment and
wages under information frictions, Finance and Economics Discussion Series
2017-047. Washington: Board of Governors of the Federal Reserve System,
https://doi.org/10.17016/FEDS.2017.047.

[24] Preston, B. (2005), Learning about monetary policy rules when long-horizon expecta-
tions matter, International Journal of Central Banking 1, 81-126.

[25] Pissarides, C. (1985), Short-run equilibrium dynamics of unemployment vacancies, and
real wages, American Economic Review 75, 676-690.

[26] Rogerson, R., Shimer, R., and Wright, R. (2005), Search-theoretic models of the labor
market: a survey, Journal of Economic Literature 43, 959-988.

[27] Sargent, T. (1999), The conquest of American inflation, Princeton Univ. Press, Prince-
ton NJ.

[28] Stokey, N.L. and Lucas, R. E. (1989), Recursive Methods in Economics, Harvard Uni-
versity Press, Cambridge, MA.

[29] Sutton, R. S. and Barto, A. G. (2011), Reinforcement learning: An introduction, MIT
Press, Cambridge, MA.

[30] Watkins, C. (1989), Learning from Delayed Rewards. PhD Thesis, University of Cam-
bridge, Cambridge, UK.

36



[31] Watkins C. and Dayan, P. (1992), Technical Note: Q-learning,” Machine Learning, 8,
279-292.

37


